Sample Booklet

Grade 5
Science
Spanish Version

A Research-Based Series for Texas
For more than two decades, we have helped you achieve student success on Texas tests by providing the highest quality test-prep materials. With STAAR MASTER®, we continue our commitment to create research-based content that engages students and makes teaching easier.
Increased rigor and challenging topics require students to use higher-order thinking skills!

STAAR MASTER® Student Practice Books
- Large volume of practice items helps the teacher easily address all STAAR®-eligible TEKS
- Provide students with repeated practice in a variety of contexts
- Help students build test-taking confidence

STAAR MASTER® Practice Tests
- Cover all STAAR®-eligible standards between Form A and Form B
- Mirror STAAR blueprint to provide the most authentic practice possible
- Help reduce test anxiety by familiarizing students with STAAR test format

STAAR MASTER® Companion Work Texts
- Organized into easy-to-use lessons to accommodate small or large groups
- Provide activities to use before, during, and after each unit is taught
- Include open-ended items as alternatives to multiple choice

STAAR MASTER® Companion Quick Checks (available for Reading only)
- Simulate STAAR® format to build students’ test-taking confidence
- Short, “quick” exercises allow teachers to easily identify students’ areas of weakness
- Reinforce skills covered in STAAR MASTER Companion Work Texts for added practice

STAAR MASTER® Quick Review (available for Math only)
- Daily and weekly exercises organized by reporting category are easy-to-use
- Provide multiple-choice and griddable items to mirror STAAR® format
- Appealing layout to engage students

Order today at staarmaster.com.
800.688.3224 • customercare@ecslearningsystems.com

Rev. 05/24/18 SMFC
Revised for the Most Recent TEKS

STAAR MASTER®

Reading • Mathematics • Writing • Social Studies • Science • Algebra I

English and Spanish versions

Credible
Same ECS quality
• based on most recent eligible TEKS and STAAR® test blueprints
• practice items marked with complexity level (L, M, or H)
• questions labeled with “skill tags”

Authentic
Reflects key characteristics of STAAR®
• increased rigor
• emphasis on readiness standards
• more open-ended (griddable) items (mathematics and science)
• assessment of process skills within context (mathematics, science, and social studies)

Fresh
Includes challenging, original content
• targeted practice in a variety of contexts
• range of topics to interest students
• clear and consistent page layout
• complete answer keys for teachers

staarmaster.com

We make teaching easier!™

ECS Learning Systems
P.O. Box 440 • Bulverde, TX 78163-0440
1.800.688.3224

STAAR MASTER® Student Practice Book—Science, Grade 5 (Spanish Version)
Dear Texas Educator,

Since 1982, ECS Learning Systems has created quality K–12 teaching materials, training, and media. As a Texas-based publisher of the highest quality test-prep materials, we have always shared your commitment to lead your students to success on Texas tests—TEAMS, TAAS, TAKS, and now the STAAR®. With STAAR MASTER®, we continue our commitment to create research-based content that engages students and makes teaching easier.

The STAAR MASTER series includes new, challenging content to prepare students for the rigor of the STAAR. It’s what you have come to expect from the most trusted source in Texas testing. Check our Web site often for the latest information at staarmaster.com.

As you use STAAR MASTER in your classroom, we hope to hear from you! Send us your story and let us know:

- Why you need our product(s)
- How you use them in your classroom
- What outcomes and results you are experiencing

At ECS, we strive to provide educators like you with easy-to-use and effective materials that make teaching easier. We count it as a privilege to have you as a customer, and we hope that our products continuously exceed your expectations.

Please let us know how well the STAAR MASTER products worked in your classroom. Also, please spread the word—many of our new customers are referred by teachers like you.

Sincerely,

Your ECS Team

Table of Contents

What’s Inside the Student Practice Book?3
Descriptions of STAAR MASTER® Complexity Levels ...5
How to Use This Book6
Some Notes on Teaching Science6
Instructional Strategies7
Graphic Organizers..9
Achieving Success in Science12
Science Vocabulary...13
Master Skills List ...15
Answer Key ...17
References ...20
What’s Inside the Student Practice Book?

The STAAR MASTER® Student Practice Book provides practice and review material for the Grade 5 Science portion of the State of Texas Assessments of Academic Readiness (STAAR®).

- Authentic practice items reflect the content students are expected to know.
- The practice items focus on the updated STAAR-eligible Science Texas Essential Knowledge and Skills (TEKS) [Texas Education Agency, 2017] standards.
- The practice items cover a broad range of topics and ideas of interest to fifth-grade students.
- Practice items are grouped according to reporting category.
- Some practice items address multiple standards/expectations, thereby assessing in a more rigorous and authentic manner.
- More than half of the practice items incorporate investigation and reasoning skills, as appropriate.
- Each question is labeled for easy identification of the TEKS-based standard and expectation addressed in the question.
- Practice items that test investigation and reasoning skills include labels to identify the specific standard and expectation addressed in the item.
- Charts, graphs, and diagrams are integrated within practice items when relevant to the standards.

Items in the STAAR MASTER® Student Practice Book address the following science concepts:

- Matter and energy
- Force, motion, and energy
- Earth and space
- Organisms and environments

Practice-Item Skills Tags

Each practice item is labeled with a “skills tag” (see Figure 1) for easy identification of the TEKS-based standard and expectation addressed in the item. The tag also notes the complexity level of the item. (For more information about complexity levels, refer to “Descriptions of STAAR MASTER® Complexity Levels,” page 5.)

This Teacher Guide includes—

- an overview of the Student Practice Book and key characteristics of the STAAR
- descriptions of STAAR MASTER complexity levels
- a master list of STAAR-eligible standards and expectations addressed in the Science TEKS
- strategies for test preparation and science instruction
- a complete answer key (with corresponding complexity levels for the practice items)
Readiness vs. Supporting Standards
The eligible, or tested, TEKS are divided into “readiness standards” and “supporting standards,” with greater emphasis on the former. Readiness standards address broader, deeper ideas and are deemed more critical for students to know. Supporting standards address more narrowly defined ideas and will still be assessed, although not emphasized. The STAAR MASTER® Student Practice Book mirrors this balance of readiness and supporting standards to provide meaningful, authentic student practice for the STAAR® assessment.

Scientific Investigation and Reasoning Skills
For the STAAR, scientific investigation and reasoning skills are not tested in isolation under a separate reporting category. These critical skills are now incorporated into at least 40% of the practice items from eligible TEKS and are reported along with those content standards (Texas Education Agency, 2010e). Similarly, in the STAAR MASTER Student Practice Book, students are asked to demonstrate these important investigation and reasoning skills within the context of practice items for other standards. When one of these skills is incorporated into a practice item, the standard and expectation are identified above the practice item (see Figure 3, below).

Increased Rigor
The STAAR program is described as “significantly more rigorous” (Texas Education Agency, 2010a) than the Texas Assessment of Knowledge and Skills (TAKS). But what does rigor mean in assessment? For the STAAR program, it means the cognitive complexity of items will increase to assess skills at a greater depth. The STAAR MASTER Student Practice Book provides items written at varying levels of complexity to accommodate this increase in rigor. (Refer to the “Depth of Knowledge” section on this page and page 5 for more information about the levels of complexity in practice items.)

Depth of Knowledge
Norman Webb’s (2002) “depth of knowledge” model is currently one of the most influential alignment models in the field of education. “Depth of knowledge” describes the degree of complexity of knowledge a curricular item requires. Webb identifies four levels of depth of knowledge: recall (Level 1), skill or concept (Level 2), strategic thinking (Level 3), and extended thinking (Level 4). Distinct cognitive demands occur during each activity, or thinking process, level. The items in the STAAR MASTER Student Practice Book were aligned to the TEKS using a modified version of the “depth-of-knowledge” model (see “Descriptions of STAAR MASTER® Complexity Levels,” page 5). During the alignment process, the complexity level of each item (designated “Low,” “Moderate,” or “High”) was determined. The level of each practice item can be found in the Answer Key.

Figure 3: Practice Item Testing Scientific Investigation and Reasoning Skills

5.4A Collect, record, and analyze information using tools, including calculators, microscopes, cameras, computers, hand lenses, metric rulers, Celsius thermometers, geiss, mirrors, balances, spring scales, graduated cylinders, beaters, hot plates, meter sticks, magnets, collecting nets, and notebooks; timing devices, and materials to support observations of habitats or organisms such as terrariums and aquariums.

5.4A; 5.5B (M)
5. Una maestra mezcla una taza de arena con un cuarto de taza de limaduras de hierro. Luego, pregunta a los estudiantes cómo podrían separarse las dos sustancias de la mezcla. ¿Qué instrumento deben recomendar los estudiantes para facilitar la separación de las sustancias?
A un vaso de precipitado
B un filtro
C un imán
D una cuchara

5.4A Collect, record, and analyze information using tools, including calculators, microscopes, cameras, computers, hand lenses, metric rulers, Celsius thermometers, geiss, mirrors, balances, spring scales, graduated cylinders, beaters, hot plates, meter sticks, magnets, collecting nets, and notebooks; timing devices, and materials to support observations of habitats or organisms such as terrariums and aquariums.
Descriptions of STAAR MASTER® Complexity Levels

The following descriptions provide an overview of the three complexity levels used to align the STAAR MASTER® Student Practice Book items to the eligible Science TEKS. Each explanation details the kinds of thinking required at each level. However, they do not represent all of the possible thought processes for each level.

Low Complexity (L)

Low-complexity items align with the TEKS at Level 1 of the Webb (2002) model. Items of low complexity may involve recalling or recognizing—but not analyzing—basic science concepts. An item may ask students to recognize or use—but not interpret—a well-known formula or simple process for completing a task. Items of this complexity may require identifying the meaning of basic science terminology. At this cognitive level, students may need to locate details in a chart, graph, or diagram. A low-complexity item may ask students to recall, identify, recognize, arrange, locate, measure, use, or define basic information and concepts.

Moderate Complexity (M)

Moderate-complexity items align with the TEKS at Level 2 of the Webb model. Items of moderate complexity involve both comprehension and the subsequent processing of information. Students may be asked to make inferences or identify a cause-and-effect relationship. However, students are not required to go beyond the text to determine an answer. At this cognitive level, students may need to identify similarities and differences. Items may involve determining answers by using information from a chart, graph, or diagram. Items of this complexity may ask students to predict, organize, classify, compare, interpret, distinguish between examples and nonexamples, summarize, identify relationships, select an appropriate process or formula, observe, or collect, organize, and display information.

High Complexity (H)

High-complexity items align with the TEKS at Level 3 and/or Level 4 of the Webb model.* Items of high complexity require students to use strategic, multi-step thinking; develop a deeper understanding of the information; and extend their thinking beyond the page. The items at this level are non-routine and more abstract. Students are asked to demonstrate more flexible thinking, apply prior knowledge, make and test conjectures, and support their responses. High-complexity items may require students to generalize based on patterns. Items may involve interpreting information from a complex graph, table, or diagram. At this cognitive level, students must justify the reasonableness of a solution or an answer when more than one solution or answer exists. Students will use concepts to develop answers and to explain their processes. A high-complexity item may ask students to plan, reason, explain, compare, differentiate, draw conclusions, cite evidence, analyze, synthesize, apply, or prove.

*Note: Although state standards may include expectations that require extended thinking, many large-scale assessment items are not classified at Level 4. Performance and open-ended assessments may require activities at Level 4.
How to Use This Book

Effective Test Preparation
What is the most effective way to prepare students for any science competency test? Experienced educators know that the best test preparation includes three critical components—

- a strong curriculum that is aligned with the content and skills to be assessed
- effective, relevant, and varied instructional methods that allow students to learn content and skills in many different ways
- targeted practice that familiarizes students with the specific content and format of the test

Obviously, a strong curriculum and effective, relevant, and varied instructional methods provide the foundation for all appropriate test preparation.

Contrary to what some might believe, merely “teaching the test” performs a great disservice to students. Students must acquire knowledge, practice skills, and have specific educational experiences that can never be included on tests limited by time and in scope. For this reason, resources like the STAAR MASTER® Student Practice Book should never become the heart of the curriculum or replace strong instructional methods.

Targeted Practice
The STAAR MASTER® Student Practice Book does, however, address the final element of effective test preparation (targeted test practice). This book familiarizes students with—

- the specific content of Texas’ competency test
- the general format of competency tests

When students become familiar with both the content and the format of a test, they know what to expect on the actual test. This, in turn, improves their chances for success.

Using STAAR MASTER® Products
Used as part of the regular curriculum, the STAAR MASTER® Student Practice Book allows teachers to—

- pretest skills students need for the actual test
- determine students’ areas of strength and/or weakness
- provide meaningful test-taking practice for students
- ease students’ test anxiety
- communicate test expectations and content to parents

Much is known about teaching science effectively to learners of all ages.

~John R. Staver

Some Notes on Teaching Science
In 2007, the International Academy of Education published a booklet titled Teaching Science by John R. Staver. The booklet presents several research-based principles for teaching science, as well as practical applications for incorporating these principles into instruction. The eight principles are listed below, but science teachers should read the entire booklet to learn more about each principle and its related practical applications.

Principles for Teaching Science

1. Teaching as a purposeful means to an end
 Think of science teaching as a purposeful means to an important end: student learning.

2. Core scientific ideas
 Concentrate on the core scientific ideas that have the greatest importance.

3. Deep scientific understanding
 Promote deep scientific understanding through teaching that mirrors the nature and characteristics of inquiry in science, the values of science, and the body of scientific knowledge.

4. Complexity of learning
 When designing and teaching science lessons, consider the complex interaction between learners’ biological maturation, prior knowledge and experience, and reasoning abilities, so the lessons challenge but do not overwhelm learners’ cognitive capabilities.

5. Active construction of scientific knowledge
 Teach with strategies and techniques that help learners become active thinkers.

6. Science content and students’ interests
 Connect science content with students’ interests and personal lives, with societal issues, and with other school subjects.

7. Expectations for learning
 For all students, set high expectations for learning.

8. Students’ anxieties and conflicts
 Use teaching strategies that lessen students’ potential anxieties and perceived conflicts when teaching scientific ideas that may be controversial for learners, even though they are not controversial among scientists.
Answer Key

Note: Complexity levels appear in parentheses. L = Low, M = Moderate, H = High

<table>
<thead>
<tr>
<th>Área de conocimientos 1</th>
<th>Ejercicio 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ejercicio 1</td>
<td>1. (L) 2. (H) 3. (M) 4. (L)</td>
</tr>
<tr>
<td>1. (M) 2. (M) 3. (M) 4. (L)</td>
<td></td>
</tr>
<tr>
<td>Ejercicio 2</td>
<td>1. (M) 2. (M) 3. (M) 4. (M)</td>
</tr>
<tr>
<td>Ejercicio 3</td>
<td>1. (H) 2. (L) 3. (H)</td>
</tr>
<tr>
<td>Ejercicio 4</td>
<td>1. (M) 2. (M) 3. (M) 4. (M)</td>
</tr>
<tr>
<td>Ejercicio 5</td>
<td>1. (H) 2. (L) 3. (M) 4. (M)</td>
</tr>
<tr>
<td>Ejercicio 6</td>
<td>1. (H) 2. (H) 3. (M)</td>
</tr>
<tr>
<td>Ejercicio 7</td>
<td>1. (H) 2. (M) 3. (M)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ejercicio 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (L) 2. (H) 3. (M) 4. (L)</td>
</tr>
<tr>
<td>Ejercicio 5</td>
</tr>
<tr>
<td>1. (M) 2. (H) 3. (H)</td>
</tr>
<tr>
<td>Ejercicio 6</td>
</tr>
<tr>
<td>1. (H) 2. (L) 3. (M) 4. (M)</td>
</tr>
<tr>
<td>Ejercicio 7</td>
</tr>
<tr>
<td>1. (H) 2. (L) 3. (H) 4. (M)</td>
</tr>
<tr>
<td>Ejercicio 8</td>
</tr>
<tr>
<td>1. (H) 2. (H) 3. (H) 4. (H)</td>
</tr>
<tr>
<td>Ejercicio 9</td>
</tr>
<tr>
<td>1. (M) 2. (M) 3. (H) 4. (L)</td>
</tr>
<tr>
<td>Ejercicio 10</td>
</tr>
<tr>
<td>1. (H) 2. (M) 3. (M)</td>
</tr>
<tr>
<td>Ejercicio 11</td>
</tr>
</tbody>
</table>

STAAR MASTER® Science References

All Web sites listed were active at time of publication.

Selected pages from

STAAR MASTER®
Revised for the Most Recent TEKS

Student Practice Book
Science, Grade 5
for the State of Texas Assessments
of Academic Readiness
Spanish Version
Translated by Magaly Gómez

ISBN: 978-1-60539-774-0

Copyright infringement is a violation of Federal Law.
©2012, 2018 by ECS Learning Systems, Bulverde, Texas. All rights reserved. No part of this publication may be reproduced, translated, stored in a retrieval system, or transmitted in any way or by any means (electronic, mechanical, photocopying, recording, or otherwise) without prior written permission from ECS Learning Systems.

Reproduction of any part of this publication for an entire school or for a school system, by for-profit institutions and tutoring centers, or for commercial sale is strictly prohibited.

Printed in the United States of America. STAAR MASTER is a registered trademark of ECS Learning Systems.

Disclaimer Statement

ECS Learning Systems recommends that the purchaser/user of this publication preview and use his/her own judgment when selecting lessons and activities. Please assess the appropriateness of the content and activities according to grade level and maturity of your students. The responsibility to adhere to safety standards and best professional practices is the duty of the teachers, students, and/or others who use the content of this publication. ECS Learning Systems is not responsible for any damage, to property or person, that results from the performance of the activities in this publication.

STAAR is a registered trademark of Texas Education Agency. STAAR MASTER and ECS Learning Systems are not affiliated with or sponsored by the Texas Education Agency or the State of Texas.

© ECS Learning Systems
Tabla de materias

Área de conocimientos 1 ... 3
Materia y energía
Área de conocimientos 2 ... 18
Fuerza, movimiento y energía
Área de conocimientos 3 ... 37
La Tierra y el espacio
Área de conocimientos 4 ... 57
Organismos y medio ambiente
Área de conocimientos 1
Materia y energía

Ejercicio 12

Usa la siguiente información para responder a las preguntas 1 y 2.
Kate tenía una hielera de espuma de poliestireno, una hielera de plástico y una bolsa aislante.

Quería saber cuál era el recipiente que mantendría más fría las bebidas durante el mayor tiempo posible. Enfrió tres vasos de agua idénticos hasta 40 °F. Luego, puso un vaso en cada recipiente y cerró el recipiente. Durante las dos horas siguientes, abrió cada recipiente cada 15 minutos y midió la temperatura del agua. Los resultados de su experimento aparecen en la gráfica de abajo.

RESULTADOS DEL EXPERIMENTO DE KATE

<table>
<thead>
<tr>
<th>Tiempo transcurrido (Minutos)</th>
<th>Temperatura (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>64</td>
</tr>
<tr>
<td>30</td>
<td>62</td>
</tr>
<tr>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>58</td>
</tr>
<tr>
<td>75</td>
<td>56</td>
</tr>
<tr>
<td>90</td>
<td>54</td>
</tr>
<tr>
<td>105</td>
<td>52</td>
</tr>
<tr>
<td>120</td>
<td>50</td>
</tr>
</tbody>
</table>

1. ¿Cuál de los siguientes podría Kate concluir de sus resultados?
A. Todos los recipientes tenían el mismo aislante.
B. El agua se volvía más caliente en cada uno de los recipientes.
C. La hielera de espuma de poliestireno conservó el agua más fría durante las dos horas.
D. La bolsa aislante es el mejor recipiente para almacenar bebidas frías.

2. ¿Cuál de las siguientes sería la que más apoyaría los resultados del experimento de Kate?
A. Usar tazas de plástico en lugar de vasos
B. Repetir el experimento con otras bebidas
C. Usar recipientes que no tengan aislantes
D. Medir la temperatura del agua cada diez minutos

5.2G; 5.5A (L)
5.2E; 5.5A (H)
5.2E; 5.6D (H)
1. Los estudiantes de la Sra. Morgan querían saber qué tan rápido puede rodar hacia abajo por una rampa un coche de juguete. El diagrama muestra cómo está preparada la prueba. La tabla muestra los resultados de su prueba.

¿Cuál sería el mejor modo de que los estudiantes mejoraran su investigación?
A Usar una rampa más larga.
B Usar un coche diferente para su prueba.
C Probar la velocidad del coche varias veces.
D Aumentar la fricción en la rampa.

<table>
<thead>
<tr>
<th>Prueba</th>
<th>Distancia (en cm)</th>
<th>Tiempo (en segundos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>3.5</td>
</tr>
</tbody>
</table>

5.6D (L)
2. Fíjate en la carretilla de abajo.

Para mover la carretilla hacia adelante, debes aplicar fuerza en el punto:
A 1
B 2
C 3
D 4

5.2B; 5.6C (H)

Para esta demostración, ¿cuál fue el intento más probable que haya hecho el Sr. Miller para mostrarlo a sus estudiantes?
A el efecto de la luz sobre el tamaño que parecen tener las cosas
B la cantidad de luz necesaria para ver palabras ocultas detrás de una señal
C el tiempo que tarda la luz en viajar de un lugar a otro
D el significado de los términos científicos transparente, translúcido y opaco
Área de conocimientos 3
La Tierra y el espacio

Ejercicio 12

5.2G; 5.8A (H)
1. Darlene hizo una investigación en la clase de ciencias. Hizo la siguiente tabla para anotar sus hallazgos.

<table>
<thead>
<tr>
<th></th>
<th>Columbus, Ohio</th>
<th>San Antonio, Texas</th>
<th>San Diego, California</th>
</tr>
</thead>
<tbody>
<tr>
<td>promedio de temperatura alta en verano (en °F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>promedio de precipitación en verano (en pulgadas)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>promedio de temperatura alta en invierno (en °F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>promedio de precipitación en invierno (en pulgadas)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¿Cuál fue el tema más probable de la investigación de Darlene?
A climas de tres ciudades en los Estados Unidos
B pronósticos del tiempo para tres ciudades en los Estados Unidos
C métodos para reportar el clima en los Estados Unidos
D movimiento de los sistemas del tiempo en los Estados Unidos

5.8B (L)
2. La energía del calor del Sol es causa de que en la Tierra el agua cambie de líquido a gas. Este proceso se llama:
A colección
B condensación
C evaporación
D precipitación

4.8A; 5.4A (L)
3. Los pluviómetros de abajo muestran las cantidades de precipitación colectada durante el periodo de tiempo de una semana.

¿Cuál es el total de pulgadas de lluvia que cayeron durante el periodo de tiempo de una semana?
A 3
B 6
C 9
D 12

5.8D (M)
4. La apariencia de la Luna la hace parecer como si cambiara de forma, o pasara por fases, porque:
A la Luna gira con tanta rapidez sobre su eje
B la Luna se ve a diferentes ángulos desde la Tierra
C la Luna gira sobre su órbita alrededor de la Tierra más lentamente que la Tierra gira sobre su órbita alrededor del Sol
D solo las partes de la Luna iluminadas por el Sol son visibles desde la Tierra
Área de conocimientos 4
Organismos y medio ambiente

El siguiente párrafo es sobre la rata canguro de Texas. Usa la información del párrafo para responder a las preguntas 1 y 2.

Rata canguro de Texas
La extraña rata canguro de Texas vive en las llanuras del Panhandle de Texas. La rata canguro escarba en la base de pequeños arbustos de mesquite para hacer su casa. Come diferentes clases de semillas, tallos, pastos y otras plantas. A caza de la rata canguro andan las zorras y las serpientes. En años recientes, el número de ratas canguro de Texas ha disminuido, y el animal está ahora amenazado con su extinción.

1. ¿Cuál de los siguientes sería la causa más probable de la reducción aún mayor de la población de ratas canguro de Texas?
 A. una disminución en el número animales de presa
 B. un aumento en la cantidad de precipitación pluvial
 C. un aumento en el índice de natalidad de la rata canguro
 D. la supresión de grandes áreas de arbusto del mesquite

2. Si la rata canguro de Texas se extinguiera, lo más probable sería que las zorras y serpientes del mismo ecosistema:
 A. se alimentaran de semillas y pastos
 B. se extinguieran también
 C. fueran a cazar a otro animal
 D. se mudaran a un lugar diferente

3. ¿Por qué es importante para las plantas el dióxido de carbono?
 A. El dióxido de carbono da a las plantas su color verde.
 B. Las plantas pueden soltar dióxido de carbono al aire.
 C. Las plantas usan dióxido de carbono para fabricar su propio alimento.
 D. El dióxido de carbono permite que las plantas absorban agua a través de sus raíces.

4. ¿Qué elemento está faltando en la red alimenticia de abajo?

 ¡zorra
 ————
 | |
 | |
 | |
 | |
 | |
 ————
 conejo
 ————
 | |
 | |
 | |
 | |
 | |
 ————
 plantas
 ————
 | |
 | |
 | |
 | |
 | |
 ————
 caracol
 ————

 A. águila
 B. Sol
 C. agua
 D. lobo

5.9C (H)
5.9A (M)
Price List Overview

<table>
<thead>
<tr>
<th>STAAR MASTER® Product Series</th>
<th>English Grades</th>
<th>Spanish Grades</th>
<th>Price Per Copy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Practice Books</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading</td>
<td>1–8</td>
<td>1–5</td>
<td>$17.99</td>
</tr>
<tr>
<td>Math</td>
<td>1–8, Alg I</td>
<td>1–5</td>
<td>$23.99</td>
</tr>
<tr>
<td>Writing</td>
<td>4, 7</td>
<td></td>
<td>$17.99</td>
</tr>
<tr>
<td>Science</td>
<td>5, 8</td>
<td>5</td>
<td>$17.99</td>
</tr>
<tr>
<td>Social Studies, Volumes I & II</td>
<td>8</td>
<td></td>
<td>$37.99</td>
</tr>
<tr>
<td>Companion Work Texts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading</td>
<td>3–8</td>
<td>3–5</td>
<td>$17.99</td>
</tr>
<tr>
<td>Math</td>
<td>3–8</td>
<td>3–5</td>
<td>$23.99</td>
</tr>
<tr>
<td>Quick Reviews</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math</td>
<td>3–8</td>
<td>3–5</td>
<td>$23.99</td>
</tr>
<tr>
<td>STAAR MASTER® Product Series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Companion Quick Checks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading</td>
<td>3–8</td>
<td>3–5</td>
<td>$49.99 (set of 30)</td>
</tr>
<tr>
<td>Practice Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading, Forms A & B</td>
<td>3–8</td>
<td>3–5</td>
<td>$99.98 (set of 30)</td>
</tr>
<tr>
<td>Math, Forms A & B</td>
<td>3–8</td>
<td>3–5</td>
<td>$99.98 (set of 30)</td>
</tr>
<tr>
<td>Writing, Forms A & B</td>
<td>4, 7</td>
<td></td>
<td>$99.98 (set of 30)</td>
</tr>
</tbody>
</table>

Request a Quote or Order Today!
customercare@ecslearningsystems.com
Bundle and Save!
staarmaster.com

All STAAR MASTER® materials are consumable and nonreproducible. Each purchase includes a FREE Teacher Guide with Answer Key. For 60+ copies, an extra Teacher Guide will be included free for each additional 30 copies ordered. Shipping/Handling/Insurance charges not included in prices—please call or visit staarmaster.com for additional information.