A Research-Based Series for Texas
For more than two decades, we have helped you achieve student success on Texas tests by providing the highest quality test-prep materials. With STAAR MASTER®, we continue our commitment to create research-based content that engages students and makes teaching easier.
Increased rigor and challenging topics require students to use higher-order thinking skills!

STAAR MASTER® Student Practice Books
- Large volume of practice items helps the teacher easily address all STAAR®-eligible TEKS
- Provide students with repeated practice in a variety of contexts
- Help students build test-taking confidence

STAAR MASTER® Practice Tests
- Cover all STAAR®-eligible standards between Form A and Form B
- Mirror STAAR blueprint to provide the most authentic practice possible
- Help reduce test anxiety by familiarizing students with STAAR test format

STAAR MASTER® Companion Work Texts
- Organized into easy-to-use lessons to accommodate small or large groups
- Provide activities to use before, during, and after each unit is taught
- Include open-ended items as alternatives to multiple choice

STAAR MASTER® Companion Quick Checks (available for Reading only)
- Simulate STAAR® format to build students’ test-taking confidence
- Short, “quick” exercises allow teachers to easily identify students’ areas of weakness
- Reinforce skills covered in STAAR MASTER Companion Work Texts for added practice

STAAR MASTER® Quick Review (available for Math only)
- Daily and weekly exercises organized by reporting category are easy-to-use
- Provide multiple-choice and griddable items to mirror STAAR® format
- Appealing layout to engage students

Order today at staarmaster.com.
800.688.3224 • customerscare@ecslearningsystems.com
Selected pages from

STAAR MASTER®

Student Practice Book
Science, Grade 5

for the State of Texas Assessments
of Academic Readiness

Teacher Guide

ISBN: 978-1-60539-745-0

Copyright infringement is a violation of Federal Law.

© 2012, 2013, 2014, 2018 by ECS Learning Systems, Bulverde, Texas. All rights reserved. No part of this publication may be reproduced, translated, stored in a retrieval system, or transmitted in any way or by any means (electronic, mechanical, photocopying, recording, or otherwise) without prior written permission from ECS Learning Systems.

Photocopying of graphic organizers by a classroom teacher at a non-profit school who has purchased this publication for his/her own class is permissible. Reproduction of any part of this publication for an entire school or for a school system, by for-profit institutions and tutoring centers, or for commercial sale is strictly prohibited.

Printed in the United States of America. STAAR MASTER is a registered trademark of ECS Learning Systems.

Disclaimer Statement

ECS Learning Systems recommends that the purchaser/user of this publication preview and use his/her own judgment when selecting lessons and activities. Please assess the appropriateness of the content and activities according to grade level and maturity of your students. The responsibility to adhere to safety standards and best professional practices is the duty of the teachers, students, and/or others who use the content of this publication. ECS Learning Systems is not responsible for any damage, to property or person, that results from the performance of the activities in this publication.

STAAR is a registered trademark of Texas Education Agency. STAAR MASTER and ECS Learning Systems are not affiliated with or sponsored by the Texas Education Agency or the State of Texas.
Dear Texas Educator,

Since 1982, ECS Learning Systems has created quality K–12 teaching materials, training, and media. As a Texas-based publisher of the highest quality test-prep materials, we have always shared your commitment to lead your students to success on Texas tests—TEAMS, TAAS, TAKS, and now the STAAR®. With STAAR MASTER®, we continue our commitment to create research-based content that engages students and makes teaching easier.

The STAAR MASTER® series includes new, challenging content to prepare students for the rigor of the STAAR. It’s what you have come to expect from the most trusted source in Texas testing. Check our Web site often for the latest information at staarmaster.com.

As you use STAAR MASTER® in your classroom, we hope to hear from you! Send us your story and let us know:

- Why you need our product(s)
- How you use them in your classroom
- What outcomes and results you are experiencing

At ECS, we strive to provide educators like you with easy-to-use and effective materials that make teaching easier. We count it as a privilege to have you as a customer, and we hope that our products continuously exceed your expectations.

Please let us know how well the STAAR MASTER® products worked in your classroom. Also, please spread the word—many of our new customers are referred by teachers like you.

Sincerely,

Your ECS Team

Table of Contents

What’s Inside the Student Practice Book?3 Graphic Organizers.................................9
Descriptions of STAAR MASTER® Achieving Success in Science......................12
Complexity Levels..................................5 Science Vocabulary.................................13
How to Use This Book..............................6 Master Skills List..................................15
Some Notes on Teaching Science...............6 Answer Key..17
Instructional Strategies..........................7 References...20

ECS Learning Systems • P. O. Box 440 • Bulverde, TX 78163-0440
staarmaster.com
1.800.688.3224 (t) • 1.877.688.3226 (f) • customercare@eclearningsystems.com
What's Inside the Student Practice Book?

The STAAR MASTER® Student Practice Book provides practice and review material for the Grade 5 Science portion of the State of Texas Assessments of Academic Readiness (STAAR®).

- Authentic practice items reflect the content students are expected to know.
- The practice items focus on the updated STAAR-eligible Science Texas Essential Knowledge and Skills (TEKS) [Texas Education Agency, 2017] standards.
- The practice items cover a broad range of topics and ideas of interest to fifth-grade students.
- Practice items are grouped according to reporting category.
- Some practice items address multiple standards/expectations, thereby assessing in a more rigorous and authentic manner.
- More than half of the practice items incorporate investigation and reasoning skills, as appropriate.
- Each question is labeled for easy identification of the TEKS-based standard and expectation addressed in the question.
- Practice items that test investigation and reasoning skills include labels to identify the specific standard and expectation addressed in the item.
- Charts, graphs, and diagrams are integrated within practice items when relevant to the standards.

Items in the STAAR MASTER® Student Practice Book address the following science concepts:

- Matter and energy
- Force, motion, and energy
- Earth and space
- Organisms and environments

Practice-Item Skills Tags

Each practice item is labeled with a “skills tag” (see Figure 1) for easy identification of the TEKS-based standard and expectation addressed in the item. The tag also notes the complexity level of the item. (For more information about complexity levels, refer to “Descriptions of STAAR MASTER® Complexity Levels,” page 5.)

This Teacher Guide includes—

- an overview of the Student Practice Book and key characteristics of the STAAR
- descriptions of STAAR MASTER complexity levels
- a master list of STAAR-eligible standards and expectations addressed in the Science TEKS
- strategies for test preparation and science instruction
- a complete answer key (with corresponding complexity levels for the practice items)
Readiness vs. Supporting Standards

The eligible, or tested, TEKS are divided into “readiness standards” and “supporting standards,” with greater emphasis on the former. Readiness standards address broader, deeper ideas and are deemed more critical for students to know. Supporting standards address more narrowly defined ideas and will still be assessed, although not emphasized. The STAAR MASTER® Student Practice Book mirrors this balance of readiness and supporting standards to provide meaningful, authentic student practice for the STAAR® assessment.

Scientific Investigation and Reasoning Skills

For the STAAR, scientific investigation and reasoning skills are not tested in isolation under a separate reporting category. These critical skills are now incorporated into at least 40% of the practice items from eligible TEKS and are reported along with those content standards (Texas Education Agency, 2010e). Similarly, in the STAAR MASTER Student Practice Book, students are asked to demonstrate these important investigation and reasoning skills within the context of practice items for other standards. When one of these skills is incorporated into a practice item, the standard and expectation are identified above the practice item (see Figure 3, below).

Increased Rigor

The STAAR program is described as “significantly more rigorous” (Texas Education Agency, 2010a) than the Texas Assessment of Knowledge and Skills (TAKS). But what does rigor mean in assessment? For the STAAR program, it means the cognitive complexity of items will increase to assess skills at a greater depth. The STAAR MASTER Student Practice Book provides items written at varying levels of complexity to accommodate this increase in rigor. (Refer to the “Depth of Knowledge” section on this page and page 5 for more information about the levels of complexity in practice items.)

Depth of Knowledge

Norman Webb’s (2002) “depth of knowledge” model is currently one of the most influential alignment models in the field of education. “Depth of knowledge” describes the degree of complexity of knowledge a curricular item requires. Webb identifies four levels of depth of knowledge: recall (Level 1), skill or concept (Level 2), strategic thinking (Level 3), and extended thinking (Level 4). Distinct cognitive demands occur during each activity, or thinking process, level. The items in the STAAR MASTER Student Practice Book were aligned to the TEKS using a modified version of the “depth-of-knowledge” model (see “Descriptions of STAAR MASTER® Complexity Levels,” page 5). During the alignment process, the complexity level of each item (designated “Low,” “Moderate,” or “High”) was determined. The level of each practice item can be found in the Answer Key.

Figure 3: Practice Item Testing Scientific Investigation and Reasoning Skills

5.4A Collect, record, and analyze information using tools, including calculators, microscopes, cameras, computers, hand lenses, metric rulers, Celsius thermometers, prisms, mirrors, balances, spring scales, graduated cylinders, beakers, hot plates, meter sticks, magnets, collecting nets, and notebooks; timing devices, and materials to support observations of habitats or organisms such as terrariums and aquariums.

5.4A; 5.5B (M)

5. A teacher mixes one cup of fine-grained sand with one-fourth cup of iron filings. Then, she asks her students how to separate the two substances in the mixture. Which tool should the students recommend to most easily separate the substances?

A Beaker
B Filter
C Magnet
D Spoon

5.4A Collect, record, and analyze information using tools, including calculators, microscopes, cameras, computers, hand lenses, metric rulers, Celsius thermometers, prisms, mirrors, balances, spring scales, graduated cylinders, beakers, hot plates, meter sticks, magnets, collecting nets, and notebooks; timing devices, and materials to support observations of habitats or organisms such as terrariums and aquariums.
Descriptions of STAAR MASTER® Complexity Levels

The following descriptions provide an overview of the three complexity levels used to align the STAAR MASTER® Student Practice Book items to the eligible Science TEKS. Each explanation details the kinds of thinking required at each level. However, they do not represent all of the possible thought processes for each level.

Low Complexity (L)

Low-complexity items align with the TEKS at Level 1 of the Webb (2002) model. Items of low complexity may involve recalling or recognizing—but not analyzing—basic science concepts. An item may ask students to recognize or use—but not interpret—a well-known formula or simple process for completing a task. Items of this complexity may require identifying the meaning of basic science terminology. At this cognitive level, students may need to locate details in a chart, graph, or diagram. A low-complexity item may ask students to recall, identify, recognize, arrange, locate, measure, use, or define basic information and concepts.

4. What are the two ends of a magnet called?
A. Attractions
B. Metals
C. Points
D. Poles

Moderate Complexity (M)

Moderate-complexity items align with the TEKS at Level 2 of the Webb model. Items of moderate complexity involve both comprehension and the subsequent processing of information. Students may be asked to make inferences or identify a cause-and-effect relationship. However, students are not required to go beyond the text to determine an answer. At this cognitive level, students may need to identify similarities and differences. Items may involve determining answers by using information from a chart, graph, or diagram. Items of this complexity may ask students to predict, organize, classify, compare, interpret, distinguish between examples and nonexamples, summarize, identify relationships, select an appropriate process or formula, observe, or collect, organize, and display information.

5. (M) Which of the following would probably reflect the most light?
A. Coffee cup
B. Notebook paper
C. Polished spoon
D. Wooden block

High Complexity (H)

High-complexity items align with the TEKS at Level 3 and/or Level 4 of the Webb model. Items of high complexity require students to use strategic, multi-step thinking; develop a deeper understanding of the information; and extend their thinking beyond the page. The items at this level are non-routine and more abstract. Students are asked to demonstrate more flexible thinking, apply prior knowledge, make and test conjectures, and support their responses. High-complexity items may require students to generalize based on patterns. Items may involve interpreting information from a complex graph, table, or diagram. At this cognitive level, students must justify the reasonableness of a solution or an answer when more than one solution or answer exists. Students will use concepts to develop answers and to explain their processes. A high-complexity item may ask students to plan, reason, explain, compare, differentiate, draw conclusions, cite evidence, analyze, synthesize, apply, or prove.

Discussion:

4. Which of the following would probably reflect the most light?
A. Coffee cup
B. Notebook paper
C. Polished spoon
D. Wooden block

5. (M) Which of the following would probably reflect the most light?
A. Coffee cup
B. Notebook paper
C. Polished spoon
D. Wooden block

6. Which of the following would probably reflect the most light?
A. Coffee cup
B. Notebook paper
C. Polished spoon
D. Wooden block

*Note: Although state standards may include expectations that require extended thinking, many large-scale assessment items are not classified at Level 4. Performance and open-ended assessments may require activities at Level 4.
How to Use This Book

Effective Test Preparation
What is the most effective way to prepare students for any science competency test? Experienced educators know that the best test preparation includes three critical components—

• a strong curriculum that is aligned with the content and skills to be assessed
• effective, relevant, and varied instructional methods that allow students to learn content and skills in many different ways
• targeted practice that familiarizes students with the specific content and format of the test

Obviously, a strong curriculum and effective, relevant, and varied instructional methods provide the foundation for all appropriate test preparation. Contrary to what some might believe, merely “teaching the test” performs a great disservice to students. Students must acquire knowledge, practice skills, and have specific educational experiences that can never be included on tests limited by time and in scope. For this reason, resources like the STAAR MASTER® Student Practice Book should never become the heart of the curriculum or replace strong instructional methods.

Targeted Practice
The STAAR MASTER Student Practice Book does, however, address the final element of effective test preparation (targeted test practice). This book familiarizes students with—

• the specific content of Texas’ competency test
• the general format of competency tests

When students become familiar with both the content and the format of a test, they know what to expect on the actual test. This, in turn, improves their chances for success.

Using STAAR MASTER® Products
Used as part of the regular curriculum, the STAAR MASTER Student Practice Book allows teachers to—

• pretest skills students need for the actual test
• determine students’ areas of strength and/or weakness
• provide meaningful test-taking practice for students
• ease students’ test anxiety
• communicate test expectations and content to parents

Much is known about teaching science effectively to learners of all ages.
~John R. Staver

Some Notes on Teaching Science

In 2007, the International Academy of Education published a booklet titled Teaching Science by John R. Staver. The booklet presents several research-based principles for teaching science, as well as practical applications for incorporating these principles into instruction. The eight principles are listed below, but science teachers should read the entire booklet to learn more about each principle and its related practical applications.

Principles for Teaching Science

1. Teaching as a purposeful means to an end
Think of science teaching as a purposeful means to an important end: student learning.

2. Core scientific ideas
Concentrate on the core scientific ideas that have the greatest importance.

3. Deep scientific understanding
Promote deep scientific understanding through teaching that mirrors the nature and characteristics of inquiry in science, the values of science, and the body of scientific knowledge.

4. Complexity of learning
When designing and teaching science lessons, consider the complex interaction between learners’ biological maturation, prior knowledge and experience, and reasoning abilities, so the lessons challenge but do not overwhelm learners’ cognitive capabilities.

5. Active construction of scientific knowledge
Teach with strategies and techniques that help learners become active thinkers.

6. Science content and students’ interests
Connect science content with students’ interests and personal lives, with societal issues, and with other school subjects.

7. Expectations for learning
For all students, set high expectations for learning.

8. Students’ anxieties and conflicts
Use teaching strategies that lessen students’ potential anxieties and perceived conflicts when teaching scientific ideas that may be controversial for learners, even though they are not controversial among scientists.
Answer Key

Note: Complexity levels appear in parentheses. L = Low, M = Moderate, H = High

<table>
<thead>
<tr>
<th>Reporting Category 1</th>
<th>Exercise 4</th>
<th>Exercise 5</th>
<th>Exercise 6</th>
<th>Exercise 7</th>
<th>Exercise 8</th>
<th>Exercise 9</th>
<th>Exercise 10</th>
<th>Exercise 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise 1</td>
<td>1. (M)</td>
<td>2. (M)</td>
<td>3. (M)</td>
<td>4. (L)</td>
<td>1. (L)</td>
<td>2. (H)</td>
<td>3. (M)</td>
<td>4. (H)</td>
</tr>
<tr>
<td>Exercise 2</td>
<td>1. (M)</td>
<td>2. (M)</td>
<td>3. (L)</td>
<td>4. (M)</td>
<td>1. (H)</td>
<td>2. (L)</td>
<td>3. (M)</td>
<td>4. (M)</td>
</tr>
<tr>
<td>Exercise 3</td>
<td>1. (H)</td>
<td>2. (L)</td>
<td>3. (H)</td>
<td>1. (M)</td>
<td>2. (H)</td>
<td>3. (H)</td>
<td>4. (H)</td>
<td></td>
</tr>
<tr>
<td>Exercise 4</td>
<td>1. (M)</td>
<td>2. (M)</td>
<td>3. (M)</td>
<td>4. (M)</td>
<td>1. (H)</td>
<td>2. (H)</td>
<td>3. (H)</td>
<td>4. (M)</td>
</tr>
<tr>
<td>Exercise 5</td>
<td>1. (H)</td>
<td>2. (M)</td>
<td>3. (L)</td>
<td>4. (L)</td>
<td>1. (H)</td>
<td>2. (H)</td>
<td>3. (H)</td>
<td>4. (M)</td>
</tr>
<tr>
<td>Exercise 6</td>
<td>1. (H)</td>
<td>2. (H)</td>
<td>3. (M)</td>
<td></td>
<td>1. (H)</td>
<td>2. (M)</td>
<td>3. (M)</td>
<td></td>
</tr>
<tr>
<td>Exercise 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STAAR MASTER® Science References

*All Web sites listed were active at time of publication.

Table of Contents

Reporting Category 1 ... 3
Matter and Energy
Reporting Category 2 ... 18
Force, Motion, and Energy
Reporting Category 3 ... 37
Earth and Space
Reporting Category 4 ... 57
Organisms and Environments
Use the following information to answer questions 1 and 2.

Kate had a foam cooler, a plastic cooler, and an insulated bag.

She wanted to know which container would keep drinks coolest for the longest period of time. She chilled three identical glasses of water to 40 °F. Then, she placed one of the glasses in each container and closed the containers. During the next two hours, she opened each container every 15 minutes and measured the temperature of the water. The results of her experiment appear on the graph below.

5.2G; 5.5A (L)
1. Which of the following could Kate conclude from her results?
 A All of the containers had equal insulation.
 B The water became warmer in each of the containers.
 C The foam cooler kept the water coolest over two hours.
 D The insulated bag is the best container for storing cool drinks.

5.2E; 5.5A (H)
2. Which of the following would most help support the results of Kate's experiment?
 A Using plastic cups instead of glasses
 B Repeating the experiment
 C Using some containers that have no insulation
 D Measuring the water temperature every ten minutes
Reporting Category 2
Force, Motion, and Energy

Exercise 18

5.2E; 5.6D (H)
1. Ms. Morgan’s students wanted to know how fast a toy car could roll down a ramp. The diagram shows how they set up their test. The chart shows the results of their test.

Speed Test

<table>
<thead>
<tr>
<th>Test</th>
<th>Distance (in cm)</th>
<th>Time (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Which would be the best way for the students to improve their investigation?

A Use a longer ramp.
B Use a different car for their test.
C Test the car’s speed several times.
D Increase the friction on the ramp.

5.6D (L)
2. Look at the wheelbarrow below.

To move the wheelbarrow forward, you should apply force at Point—

A 1 C 3
B 2 D 4

5.2B; 5.6C (H)
3. Mr. Miller set up a demonstration for his students. One step of the demonstration is shown below.

For this demonstration, what was Mr. Miller most likely trying to show his students?

A The effect of light on how large things appear to be
B The amount of light needed to see words hidden behind a sign
C The amount of time it takes for light to travel from one place to another
D The meaning of the science terms transparent, translucent, and opaque
5.2G; 5.8A (H)

1. Darlene did research in science class. She made the following chart to record her findings.

<table>
<thead>
<tr>
<th></th>
<th>Columbus, Ohio</th>
<th>San Antonio, Texas</th>
<th>San Diego, California</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average High Temperature in Summer (in °F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Precipitation in Summer (in inches)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average High Temperature in Winter (in °F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Precipitation in Winter (in inches)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What was the most likely topic of Darlene’s research?
- A Climates of three cities in the United States
- B Weather forecasts for three cities in the United States
- C Methods for reporting the weather in the United States
- D Movement of weather systems across the United States

5.8B (L)

2. The Sun’s heat energy causes Earth’s water to change from a liquid to a gas. This process is called—
- A collection
- B condensation
- C evaporation
- D precipitation

4.8A; 5.4A (L)

3. The rain gauges below show the amounts of precipitation collected on different days during a one-week period of time.

How many total inches of rain fell during the one-week period of time?
- A 3
- B 6
- C 9
- D 12

5.8D (M)

4. The Moon’s appearance seems to change shape, or go through phases, because—
- A the Moon rotates so quickly on its axis
- B the Moon is seen at different angles from Earth
- C the Moon orbits Earth more slowly than Earth orbits the Sun
- D only the parts of the Moon lit by the Sun are visible from Earth
The following paragraph is about the Texas kangaroo rat. Use information from the paragraph to answer questions 1 and 2.

Texas Kangaroo Rat

The rare Texas kangaroo rat lives on the Panhandle Plains of Texas. The kangaroo rat burrows at the base of small mesquite bushes to make its home. It eats different kinds of seeds, stems, grasses, and other plants. The kangaroo rat is hunted by foxes and snakes. In recent years, the number of Texas kangaroo rats has decreased, and the animal is now threatened with extinction.

5.9C (H)

1. Which of the following would most likely reduce the population of Texas kangaroo rats even more?
 A. A decrease in the number of prey
 B. An increase in the amount of rainfall
 C. An increase in the kangaroo rat birthrate
 D. Removal of large sections of mesquite brush

5.9A (M)

2. If the Texas kangaroo rat became extinct, the foxes and snakes in the same ecosystem would most likely—
 A. eat seeds and grasses
 B. become extinct as well
 C. hunt a different animal
 D. move to a different place

4.9A (M)

3. Why is carbon dioxide important for plants?
 A. Carbon dioxide gives plants their green color.
 B. Plants can release carbon dioxide into the air.
 C. Plants use carbon dioxide to make their own food.
 D. Carbon dioxide lets plants absorb water through their roots.

5.9B (M)

4. What element is missing from the food web below?
 A. Eagle
 B. Sun
 C. Water
 D. Wolf
Price List Overview

<table>
<thead>
<tr>
<th>STAAR MASTER® Product Series</th>
<th>English Grades</th>
<th>Spanish Grades</th>
<th>Qty 15–29</th>
<th>Qty 30–59</th>
<th>Qty 60+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Practice Books</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading</td>
<td>1–8</td>
<td>1–5</td>
<td>$17.99</td>
<td>$15.99</td>
<td>$13.99</td>
</tr>
<tr>
<td>Math</td>
<td>1–8, Alg I</td>
<td>1–5</td>
<td>$23.99</td>
<td>$20.99</td>
<td>$17.99</td>
</tr>
<tr>
<td>Writing</td>
<td>4, 7</td>
<td></td>
<td>$17.99</td>
<td>$15.99</td>
<td>$13.99</td>
</tr>
<tr>
<td>Science</td>
<td>5, 8</td>
<td>5</td>
<td>$17.99</td>
<td>$15.99</td>
<td>$13.99</td>
</tr>
<tr>
<td>Social Studies, Volumes I & II</td>
<td>8</td>
<td></td>
<td>$37.99</td>
<td>$32.99</td>
<td>$27.99</td>
</tr>
</tbody>
</table>

| **Companion Work Texts** | | | | | |

| **Quick Reviews** | | | | | |

<table>
<thead>
<tr>
<th>STAAR MASTER® Product Series</th>
<th>English Grades</th>
<th>Spanish Grades</th>
<th>Price Per Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Companion Quick Checks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading</td>
<td>3–8</td>
<td>3–5</td>
<td>$49.99 (set of 30)</td>
</tr>
<tr>
<td>Practice Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading, Forms A & B</td>
<td>3–8</td>
<td>3–5</td>
<td>$99.98 (set of 30)</td>
</tr>
<tr>
<td>Math, Forms A & B</td>
<td>3–8</td>
<td>3–5</td>
<td>$99.98 (set of 30)</td>
</tr>
<tr>
<td>Writing, Forms A & B</td>
<td>4, 7</td>
<td></td>
<td>$99.98 (set of 30)</td>
</tr>
</tbody>
</table>

Request a Quote
or
Order Today!
customercare@ecslearning systems.com

Bundle and Save!
staarmaster.com

All STAAR MASTER® materials are consumable and nonreproducible. Each purchase includes a FREE Teacher Guide with Answer Key. For 60+ copies, an extra Teacher Guide will be included free for each additional 30 copies ordered. Shipping/Handling/Insurance charges not included in prices—please call or visit staarmaster.com for additional information.